|
In computing and optical disc recording technologies, an optical disc (OD) is a flat, usually circular disc which encodes binary data (bits) in the form of pits (binary value of 0 or off, due to lack of reflection when read) and lands (binary value of 1 or on, due to a reflection when read) on a special material (often aluminium〔(【引用サイトリンク】first=Dr. Adewole )〕 ) on one of its flat surfaces. The encoding material sits atop a thicker substrate (usually polycarbonate) which makes up the bulk of the disc and forms a dust defocusing layer. The encoding pattern follows a continuous, spiral path covering the entire disc surface and extending from the innermost track to the outermost track. The data is stored on the disc with a laser or stamping machine, and can be accessed when the data path is illuminated with a laser diode in an optical disc drive which spins the disc at speeds of about 200 to 4,000 RPM or more, depending on the drive type, disc format, and the distance of the read head from the center of the disc (inner tracks are read at a higher disc speed). Most optical discs exhibit a characteristic iridescence as a result of the diffraction grating formed by its grooves. This side of the disc contains the actual data and is typically coated with a transparent material, usually lacquer. The reverse side of an optical disc usually has a printed label, sometimes made of paper but often printed or stamped onto the disc itself. Unlike the 3½-inch floppy disk, most optical discs do not have an integrated protective casing and are therefore susceptible to data transfer problems due to scratches, fingerprints, and other environmental problems. Optical discs are usually between 7.6 and 30 cm (3 to 12 in) in diameter, with 12 cm (4.75 in) being the most common size. A typical disc is about 1.2 mm (0.05 in) thick, while the track pitch (distance from the center of one track to the center of the next) ranges from 1.6 µm (for CDs) to 320 nm (for Blu-ray discs). An optical disc is designed to support one of three recording types: read-only (e.g.: CD and CD-ROM), recordable (write-once, e.g. CD-R), or re-recordable (rewritable, e.g. CD-RW). Write-once optical discs commonly have an organic dye recording layer between the substrate and the reflective layer. Rewritable discs typically contain an alloy recording layer composed of a phase change material, most often AgInSbTe, an alloy of silver, indium, antimony, and tellurium.〔(Guides/Storage/CD-R/CD-RW – PC Technology Guide ). Pctechguide.com (1999-02-22). Retrieved on 2011-10-09.〕 Optical discs are most commonly used for storing music (e.g. for use in a CD player), video (e.g. for use in a Blu-ray player), or data and programs for personal computers (PC). The Optical Storage Technology Association (OSTA) promotes standardized optical storage formats. Although optical discs are more durable than earlier audio-visual and data storage formats, they are susceptible to environmental and daily-use damage. Libraries and archives enact optical media preservation procedures to ensure continued usability in the computer's optical disc drive or corresponding disc player. For computer data backup and physical data transfer, optical discs such as CDs and DVDs are gradually being replaced with faster, smaller solid-state devices, especially the USB flash drive. This trend is expected to continue as USB flash drives continue to increase in capacity and drop in price. Additionally, music purchased or shared over the Internet has significantly reduced the number of audio CDs sold annually. ==History== An early analog optical disc used for video recording was invented by David Paul Gregg in 1958 and patented in the US in 1961 and 1969. This form of optical disc was a very early form of the DVD (). It is of special interest that , filed 1989, issued 1990, generated royalty income for Pioneer Corporation's DVA until 2007 —then encompassing the CD, DVD, and Blu-ray systems. In the early 1960s, the Music Corporation of America bought Gregg's patents and his company, Gauss Electrophysics. American inventor James T. Russell has been credited with inventing the first system to record a digital signal on an optical transparent foil which is lit from behind by a high-power halogen lamp. Russell's patent application was first filed in 1966 and he was granted a patent in 1970. Following litigation, Sony and Philips licensed Russell's patents (then held by a Canadian company, Optical Recording Corp.) in the 1980s.〔(【引用サイトリンク】title=Inventor of the Week - James T. Russell - The Compact Disc )〕 Both Gregg's and Russell's disc are floppy media read in transparent mode, which impose serious drawbacks. In the Netherlands in 1969, Philips Research physicist, Pieter Kramer invented an optical videodisc in reflective mode with a protective layer read by a focused laser beam , filed 1972, issued 1991. Kramer's physical format is used in all optical discs. In 1975, Philips and MCA began to work together, and in 1978, commercially much too late, they presented their long-awaited Laserdisc in Atlanta. MCA delivered the discs and Philips the players. However, the presentation was a commercial failure, and the cooperation ended. In Japan and the U.S., Pioneer succeeded with the videodisc until the advent of the DVD. In 1979, Philips and Sony, in consortium, successfully developed the audio compact disc. In the mid-1990s, a consortium of manufacturers developed the second generation of the optical disc, the DVD. Magnetic disks found limited applications in storing the data in large amount. So, there was the need of finding some more data storing techniques. As a result, it was found that by using optical means large data storing devices can be made which in turn gave rise to the optical discs.The very first application of this kind was the Compact Disc(CD) which was used in audio systems. Sony and Philips developed the first generation of the CDs in the mid 1980s with the complete specifications for these devices. With the help of this kind of technology the possibility of representing the analog signal into digital signal was exploited to great level. For this purpose the 16 bit samples of the analog signal were taken at the rate of 44,100 samples per second. This sample rate was based on the Nyquist rate of 40,000 samples per second required to capture the audible frequency range to 20 kHz without aliasing, with an additional tolerance to allow the use of less-than-perfect analog audio pre-filters to remove any higher frequencies.〔Hass, J. ''Introduction to Computer Music'', Indiana University CECM (retrieved 8 October 2014), Volume One, Chapter Five: Digital Audio.()〕 The first version of the standard allowed up to 75 minutes of music which required 650MB of storage. The third generation optical disc was developed in 2000–2006, and was introduced as Blu-ray Disc. First movies on Blu-ray Discs were released in June 2006. Blu-ray eventually prevailed in a high definition optical disc format war over a competing format, the HD DVD. A standard Blu-ray disc can hold about 25 GB of data, a DVD about 4.7 GB, and a CD about 700 MB. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「optical disc」の詳細全文を読む スポンサード リンク
|